54 research outputs found

    Priority Control of Berth Allocation Problem in Container Terminals

    Get PDF
    This paper presents a decision support system for the core problem of berth allocation decision in a container terminal. The allocation of berths to the calling vessels is complex with the fact that different service level requirements are required for different vessels. Terminal managers demand for effective decision support systems that would aid them with the allocation problem considering service priorities. Consequently, this study provides a DSS, built by a dynamic discrete-event simulation model embedded with an optimization tool that determines the priority controls for the berth allocation to the calling vessels. To show the practical application of the DSS, a comprehensive case study from a Turkish container terminal considering the current state and future expansion plans that also provides an indication of the usability aspect of the program on other ports around the world has been conducted. Further experiments are conducted based on data from the Port of Rotterdam. The DSS presented in this study may help port authorities in determining more efficient allocation decisions within a container terminal

    An Integrated Optimization Framework for Multi-Component Predictive Analytics in Wind Farm Operations & Maintenance

    Get PDF
    Recent years have seen an unprecedented growth in the use of sensor data to guide wind farm operations and maintenance. Emerging sensor-driven approaches typically focus on optimal maintenance procedures for single turbine systems, or model multiple turbines in wind farms as single component entities. In reality, turbines are composed of multiple components that dynamically interact throughout their lifetime. These interactions are central for realistic assessment and control of turbine failure risks. In this paper, an integrated framework that combines i) real-time degradation models used for predicting remaining life distribution of each component, with ii) mixed integer optimization models and solution algorithms used for identifying optimal wind farm maintenance and operations is proposed. Maintenance decisions identify optimal times to repair every component, which in turn, determine the failure risk of the turbines. More specifically, optimization models that characterize a turbine's failure time as the first time that one of its constituent components fail - a systems reliability concept called competing risk is developed. The resulting turbine failures impact the optimization of wind farm operations and revenue. Extensive experiments conducted for multiple wind farms with 300 wind turbines - 1200 components - showcases the performance of the proposed framework over conventional methods

    LNG Bunkering Network Design in Inland Waterways

    Get PDF
    Growing awareness of the environment and new regulations of the International Maritime Organization and the European Union are forcing ship-owners to reduce pollution. The use of liquefied natural gas (LNG) is one of the most promising options for achieving a reduction in pollution for inland shipping and short sea shipping. However, the infrastructure to facilitate the broad use of LNG is yet to be developed. We advance and analyze models that suggest LNG infrastructure development plans for refueling stations that support pipeline-to-ship and truck-to-ship bunkering, specifying locations, types, and capacities, and that take into account the characteristics of LNG, such as boil-off during storage and loading. We develop an effective primal heuristic, based on Lagrangian relaxation, for the solution of the models. We validate our approach by performing a computational study for the waterway network in the Arnhem-Nijmegen region in the West-European river network, including, among others, multi-year scenarios in which capacity expansion and reduction are possible

    Assessment approaches to logistics for offshore wind energy installation

    Get PDF
    AbstractOffshore wind farm installation planning is highly complex, due to the high dependency on weather and the oversized components that impose specific constraints in areas such as transportation and lifting. Currently, there is very little transparency vis-Ă -vis the logistics challenges in the industry. We extend the literature by creating an overall view of the coherency between logistical methods and project performance. We develop knowledge about how to use the various approaches by analyzing different logistical solutions. A holistic view of the coherency between the approaches in terms of logistics and project performance, taking into consideration the external influence of weather, is provided through analysis of actual projects in the North Sea region. Case study findings reveal the major factors to be pre-assembly, vessel load, and the distance to shore. We suggest a pre-assembly strategy comprised of a minimum number of components for installation onsite and a maximum number of turbines to be loaded on a vessel. These findings are especially important for the new wind farms being positioned further offshore. We show by means of a case study, with specific characteristics and weather conditions, that the appropriate strategies can be arrived at by using a simulation-based decision-support tool we developed

    Stochastic Cyclic Inventory Routing with Supply Uncertainty: A Case in Green-Hydrogen Logistics

    Get PDF
    Hydrogen can be produced from water, using electricity. The hydrogen can subsequently be kept in inventory in large quantities, unlike the electricity itself. This enables solar and wind energy generation to occur asynchronously from its usage. For this reason, hydrogen is expected to be a key ingredient for reaching a climate-neutral economy. However, the logistics for hydrogen are complex. Inventory policies must be determined for multiple locations in the network, and transportation of hydrogen from the production location to customers must be scheduled. At the same time, production patterns of hydrogen are intermittent, which affects the possibilities to realize the planned transportation and inventory levels. To provide policies for efficient transportation and storage of hydrogen, this paper proposes a parameterized cost function approximation approach to the stochastic cyclic inventory routing problem. Firstly, our approach includes a parameterized mixed integer programming (MIP) model which yields fixed and repetitive schedules for vehicle transportation of hydrogen. Secondly, buying and selling decisions in case of underproduction or overproduction are optimized further via a Markov decision process (MDP) model, taking into account the uncertainties in production and demand quantities. To jointly optimize the parameterized MIP and the MDP model, our approach includes an algorithm that searches the parameter space by iteratively solving the MIP and MDP models. We conduct computational experiments to validate our model in various problem settings and show that it provides near-optimal solutions. Moreover, we test our approach on an expert-reviewed case study at two hydrogen production locations in the Netherlands. We offer insights for the stakeholders in the region and analyze the impact of various problem elements in these case studies.<br/

    Reliable reserve-crew scheduling for airlines

    Get PDF
    We study the practical setting in which regular- and reserve-crew schedules are dynamically maintained up to the day of executing the schedule. At each day preceding the execution of the schedule, disruptions occur due to sudden unavailability of personnel, making the planned regular and reserve-crew schedules infeasible for its execution day. This paper studies the fundamental question how to repair the schedules’ infeasibility in the days preceding the execution, taking into account labor regulations. We propose a robust repair strategy that maintains flexibility in order to cope with additional future disruptions. The flexibility in reserve-crew usage is explicitly considered through evaluating the expected shortfall of the reserve-crew schedule based on a Markov chain formulation. The core of our approach relies on iteratively solving a set-covering formulation, which we call the Robust Crew Recovery Problem, which encapsulates this flexibility notion for reserve crew usage. A tailored branch-and-price algorithm is developed for solving the Robust Crew Recovery Problem to optimality. The corresponding pricing problem is efficiently solved by a newly developed pulse algorithm. Based on actual data from a medium-sized hub-and-spoke airline, we show that embracing our approach leads to fewer flight cancellations and fewer last-minute alterations, compared to repairing disrupted schedules without considering our robust measure.</p

    Stochastic Cyclic Inventory Routing with Supply Uncertainty: A Case in Green-Hydrogen Logistics

    Full text link
    Hydrogen can be produced from water, using electricity. The hydrogen can subsequently be kept in inventory in large quantities, unlike the electricity itself. This enables solar and wind energy generation to occur asynchronously from its usage. For this reason, hydrogen is expected to be a key ingredient for reaching a climate-neutral economy. However, the logistics for hydrogen are complex. Inventory policies must be determined for multiple locations in the network, and transportation of hydrogen from the production location to customers must be scheduled. At the same time, production patterns of hydrogen are intermittent, which affects the possibilities to realize the planned transportation and inventory levels. To provide policies for efficient transportation and storage of hydrogen, this paper proposes a parameterized cost function approximation approach to the stochastic cyclic inventory routing problem. Firstly, our approach includes a parameterized mixed integer programming (MIP) model which yields fixed and repetitive schedules for vehicle transportation of hydrogen. Secondly, buying and selling decisions in case of underproduction or overproduction are optimized further via a Markov decision process (MDP) model, taking into account the uncertainties in production and demand quantities. To jointly optimize the parameterized MIP and the MDP model, our approach includes an algorithm that searches the parameter space by iteratively solving the MIP and MDP models. We conduct computational experiments to validate our model in various problem settings and show that it provides near-optimal solutions. Moreover, we test our approach on an expert-reviewed case study at two hydrogen production locations in the Netherlands. We offer insights for the stakeholders in the region and analyze the impact of various problem elements in these case studies

    A Precedence Constrained Knapsack Problem with Uncertain Item Weights for Personalized Learning Systems

    Get PDF
    This paper studies a unique precedence constrained knapsack problem in which there are two methods available to place an item in the knapsack. Whether or not an item weight is uncertain depends on which one of the two methods is selected. This knapsack problem models students’ decisions on choosing subjects to study in hybrid personalized learning systems in which students can study either under teacher supervision or in an unsupervised self-study mode by using online tools. We incorporate the uncertainty in the problem using a chance-constrained programming framework. Under the assumption that uncertain item weights are independently and normally distributed, we focus on the deterministic reformulation in which the capacity constraint involves a nonlinear and convex function of the decision variables. By using the first-order linear approximations of this function, we propose an exact cutting plane method that iteratively adds feasibility cuts. To supplement this, we develop novel approximate cutting plane methods that converge quickly to high-quality feasible solutions. To improve the computational efficiency of our methods, we introduce new pre-processing procedures to eliminate items beforehand and cover cuts to refine the feasibility space. Our computational experiments on small and large problem instances show that the optimality gaps of our approximate methods are very small overall, and that they are even able to find solutions with no optimality gaps as the number of items increases in the instances. Moreover, our experiments demonstrate that our pre-processing methods are particularly effective when the precedence relations are dense, and that our cover cuts may significantly speed up our exact cutting plane approach in challenging instances

    Reliable Reserve-Crew Scheduling for Airlines

    Full text link
    We study the practical setting in which regular- and reserve-crew schedules are dynamically maintained up to the day of executing the schedule. At each day preceding the execution of the schedule, disruptions occur due to sudden unavailability of personnel, making the planned regular and reserve-crew schedules infeasible for its execution day. This paper studies the fundamental question how to repair the schedules' infeasibility in the days preceding the execution, taking into account labor regulations. We propose a robust repair strategy that maintains flexibility in order to cope with additional future disruptions. The flexibility in reserve-crew usage is explicitly considered through evaluating the expected shortfall of the reserve-crew schedule based on a Markov chain formulation. The core of our approach relies on iteratively solving a set-covering formulation, which we call the Robust Crew Recovery Problem, which encapsulates this flexibility notion for reserve crew usage. A tailored branch-and-price algorithm is developed for solving the Robust Crew Recovery Problem to optimality. The corresponding pricing problem is efficiently solved by a newly developed pulse algorithm. Based on actual data from a medium-sized hub-and-spoke airline, we show that embracing our approach leads to fewer flight cancellations and fewer last-minute alterations, compared to repairing disrupted schedules without considering our robust measure

    A Precedence Constrained Knapsack Problem with Uncertain Item Weights for Personalized Learning Systems

    Get PDF
    This paper studies a unique precedence constrained knapsack problem in which there are two methods available to place an item in the knapsack. Whether or not an item weight is uncertain depends on which one of the two methods is selected. This knapsack problem models students’ decisions on choosing subjects to study in hybrid personalized learning systems in which students can study either under teacher supervision or in an unsupervised self-study mode by using online tools. We incorporate the uncertainty in the problem using a chance-constrained programming framework. Under the assumption that uncertain item weights are independently and normally distributed, we focus on the deterministic reformulation in which the capacity constraint involves a nonlinear and convex function of the decision variables. By using the first-order linear approximations of this function, we propose an exact cutting plane method that iteratively adds feasibility cuts. To supplement this, we develop novel approximate cutting plane methods that converge quickly to high-quality feasible solutions. To improve the computational efficiency of our methods, we introduce new pre-processing procedures to eliminate items beforehand and cover cuts to refine the feasibility space. Our computational experiments on small and large problem instances show that the optimality gaps of our approximate methods are very small overall, and that they are even able to find solutions with no optimality gaps as the number of items increases in the instances. Moreover, our experiments demonstrate that our pre-processing methods are particularly effective when the precedence relations are dense, and that our cover cuts may significantly speed up our exact cutting plane approach in challenging instances
    • …
    corecore